Connexion

Bruins
GP: 57 | W: 37 | L: 16 | OTL: 4 | P: 78
GF: 240 | GA: 198 | PP%: 27.43% | PK%: 75.98%
DG: Maksim Odi | Morale : 40 | Moyenne d’équipe : 62
Prochains matchs #934 vs Gulls
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Bruins
37-16-4, 78pts
0
FINAL
8 Wolves
26-28-3, 55pts
Team Stats
L2StreakW1
22-6-1Home Record15-13-2
15-10-3Away Record11-15-1
6-4-0Last 10 Games7-2-1
4.21Buts par match 4.19
3.47Buts contre par match 4.53
27.43%Pourcentage en avantage numérique35.40%
75.98%Pourcentage en désavantage numérique75.76%
Admirals
18-37-5, 41pts
6
FINAL
5 Bruins
37-16-4, 78pts
Team Stats
W3StreakL2
10-17-2Home Record22-6-1
8-20-3Away Record15-10-3
4-6-0Last 10 Games6-4-0
3.97Buts par match 4.21
5.45Buts contre par match 3.47
26.71%Pourcentage en avantage numérique27.43%
69.93%Pourcentage en désavantage numérique75.98%
Gulls
29-26-4, 62pts
2022-10-08
Bruins
37-16-4, 78pts
Statistiques d’équipe
L1SéquenceL2
14-14-1Fiche domicile22-6-1
15-12-3Fiche visiteur15-10-3
4-5-110 derniers matchs6-4-0
4.14Buts par match 4.21
3.97Buts contre par match 4.21
28.14%Pourcentage en avantage numérique27.43%
70.81%Pourcentage en désavantage numérique75.98%
Roadrunners
21-31-6, 48pts
2022-10-11
Bruins
37-16-4, 78pts
Statistiques d’équipe
L2SéquenceL2
10-17-2Fiche domicile22-6-1
11-14-4Fiche visiteur15-10-3
1-7-210 derniers matchs6-4-0
4.24Buts par match 4.21
5.17Buts contre par match 4.21
27.27%Pourcentage en avantage numérique27.43%
71.43%Pourcentage en désavantage numérique75.98%
Bruins
37-16-4, 78pts
2022-10-12
Reign
42-12-3, 87pts
Statistiques d’équipe
L2SéquenceW4
22-6-1Fiche domicile23-4-2
15-10-3Fiche visiteur19-8-1
6-4-010 derniers matchs8-2-0
4.21Buts par match 4.77
3.47Buts contre par match 4.77
27.43%Pourcentage en avantage numérique26.19%
75.98%Pourcentage en désavantage numérique79.72%
Meneurs d'équipe
Jack StudnickaButs
Jack Studnicka
30
Tyler LewingtonPasses
Tyler Lewington
46
Jack StudnickaPoints
Jack Studnicka
66
Matt FilipePlus/Moins
Matt Filipe
29
Troy GrosenickVictoires
Troy Grosenick
23
Kyle KeyserPourcentage d’arrêts
Kyle Keyser
1

Statistiques d’équipe
Buts pour
240
4.21 GFG
Tirs pour
2138
37.51 Avg
Pourcentage en avantage numérique
27.4%
48 GF
Début de zone offensive
39.3%
Buts contre
198
3.47 GAA
Tirs contre
2036
35.72 Avg
Pourcentage en désavantage numérique
76.0%
43 GA
Début de la zone défensive
40.7%
Informations de l'équipe

Directeur généralMaksim Odi
EntraîneurJim Playfair
DivisionDivision 1
ConférenceConference 1
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro18
Équipe Mineure22
Limite contact 40 / 20
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Jack StudnickaX100.006531906379888167766962656365686940650231769,167$
2Joona KoppanenX100.008036815789697560636058605665675440620241750,000$
3Marc McLaughlinX100.0067368962757870576358635261656644406012210$
4Jakub LaukoX100.005934726069848060636257546063656540590222764,167$
5Matt FilipeX100.007236735481768255585657575366686340590241817,500$
6Samuel AsselinX100.005639756066828755666156535865674240580232800,000$
7Jack AhcanX100.006335926567857666306467605366685340630251925,000$
8Tyler LewingtonX100.006843656079788063307163675069714640630271750,000$
9Kodie CurranX100.0071317859807276583061565950747625406103211,000,000$
10Nick WolffX100.008773615495696455305752624567695140590251750,000$
Rayé
1Trent FredericX100.0077826867887886656963676361656776406502421,050,000$
2Oskar SteenX100.007437896770828566726763616366674740640241809,167$
3Steven FogartyX77.486939806283828362726561646170725240640291750,000$
4Cameron HughesX100.007437916269897865796660666268724640640251750,000$
5Curtis HallX100.006438915384727453585554515363656540570223925,000$
MOYENNE D’ÉQUIPE98.47704280607879786057626060576669534062
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Tuukka Rask100.008472717983828483828483878950406803511,000,000$
Rayé
1Troy Grosenick100.00757372767473757473757474884540630321750,000$
2Kyle Keyser100.00727473767170727170727163695340610231733,333$
MOYENNE D’ÉQUIPE100.0077737277767577767577767582494064
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Jim Playfair68737469847863CAN563800,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jack StudnickaBruins (BOS)C543036662860361332568318011.72%21110420.466713421320001694120.4666900011.1901000472
2Tyler LewingtonBruins (BOS)D571946652056015487132427514.39%107134623.6271219471410001122320.00%000200.9700000563
3Oskar SteenBruins (BOS)C542834621460671032246515412.50%8107919.998513451260000234119.9919700101.1500000355
4Jack AhcanBruins (BOS)D5713465912160386814444949.03%90141224.7851318541430000152010.00%100000.8400000320
5Cameron HughesBruins (BOS)C4327285526120571312045312313.24%1783919.5344822670113878019.5398500011.3100000643
6Joona KoppanenBruins (BOS)LW571932516360158711715010311.11%11111819.63471130132000035019.637100000.9100000044
7Steven FogartyBruins (BOS)C54173047117589103191651418.90%12100618.6417822610110591018.6462700010.9300100402
8Trent FredericBruins (BOS)C382123447200801031793212211.73%1486722.8221113279700021003222.82109500101.0101000212
9Kodie CurranBruins (BOS)D52633391918033496624409.09%67106320.46369291211013120000.00%000000.7300000023
10Jakub LaukoBruins (BOS)LW57172138-41006762149368811.41%2188915.61112290000181215.615500000.8500000112
11Matt FilipeBruins (BOS)LW571421352922011349115268712.17%896917.00369231150000142017.007900010.7200000231
12Nick WolffBruins (BOS)D5762026141000166458718416.90%87109519.2212332113000094210.00%000000.4700000002
13Marc McLaughlinBruins (BOS)C571115261180464197348211.34%784014.750221130000122014.757600000.6200000203
14Samuel AsselinBruins (BOS)C5722022537581274518264.44%5484114.760112120000570014.765900000.5200010000
15Curtis HallBruins (BOS)C3401212540411013140.00%3048814.360000000000000.00%000000.4900000000
16Jakub ZborilBruinsD7279-1401212194710.53%1617725.38123916000020100.00%000001.0100000001
17Anton BlidhBruinsLW453852014102431520.83%28621.73202460000120121.733600011.8400000102
Statistiques d’équipe totales ou en moyenne79623742766418738410125211042116598138211.20%5721522919.134886134391131212310970361156.63%395000450.8702110333535
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickBruins (BOS)3723830.9053.2619892010811410100.66733623131
2Tuukka RaskBruins (BOS)1712410.9123.06101900525900300.00%0171102
3Kyle KeyserBruins (BOS)10001.0000.00%16000140000.00%004000
Statistiques d’équipe totales ou en moyenne55351240.9083.1730262016017450400.66735328233


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Cameron HughesBruins (BOS)C251996-10-09No160 Lbs5 ft11NoNoNo1Pro & Farm750,000$225,806$0$0$NoLien / Lien NHL
Curtis HallBruins (BOS)C222000-04-26No197 Lbs6 ft3NoNoNo3Pro & Farm925,000$278,495$0$0$No925,000$925,000$Lien / Lien NHL
Jack AhcanBruins (BOS)D251997-05-18No180 Lbs5 ft9NoNoNo1Pro & Farm925,000$278,495$0$0$NoLien / Lien NHL
Jack StudnickaBruins (BOS)C231999-02-18No186 Lbs6 ft2NoNoNo1Pro & Farm769,167$231,577$0$0$NoLien / Lien NHL
Jakub LaukoBruins (BOS)LW222000-03-28No169 Lbs6 ft0NoNoNo2Pro & Farm764,167$230,072$0$0$No764,167$Lien / Lien NHL
Joona KoppanenBruins (BOS)LW241998-02-25No192 Lbs6 ft5NoNoNo1Pro & Farm750,000$225,806$0$0$NoLien / Lien NHL
Kodie CurranBruins (BOS)D321989-12-18No200 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$301,075$0$0$NoLien / Lien NHL
Kyle KeyserBruins (BOS)G231999-03-08No178 Lbs6 ft2NoNoNo1Pro & Farm733,333$220,788$0$0$NoLien / Lien NHL
Marc McLaughlinBruins (BOS)C221999-07-26No198 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLien
Matt FilipeBruins (BOS)LW241997-12-31No198 Lbs6 ft2NoNoNo1Pro & Farm817,500$246,129$0$0$NoLien / Lien NHL
Nick WolffBruins (BOS)D251996-07-21No229 Lbs6 ft5NoNoNo1Pro & Farm750,000$225,806$0$0$NoLien / Lien NHL
Oskar SteenBruins (BOS)C241998-03-09No199 Lbs5 ft9NoNoNo1Pro & Farm809,167$243,620$0$0$NoLien / Lien NHL
Samuel AsselinBruins (BOS)C231998-07-01No180 Lbs5 ft9NoNoNo2Pro & Farm800,000$240,860$0$0$No800,000$Lien / Lien NHL
Steven FogartyBruins (BOS)C291993-04-19No200 Lbs6 ft3NoNoNo1Pro & Farm750,000$225,806$0$0$NoLien / Lien NHL
Trent FredericBruins (BOS)C241998-02-11No216 Lbs6 ft3NoNoNo2Pro & Farm1,050,000$316,129$0$0$No1,050,000$Lien / Lien NHL
Troy GrosenickBruins (BOS)G321989-08-27No185 Lbs6 ft1NoNoNo1Pro & Farm750,000$225,806$0$0$NoLien / Lien NHL
Tuukka RaskBruins (BOS)G351987-03-10No176 Lbs6 ft3NoNoNo1Pro & Farm1,000,000$301,075$0$0$NoLien / Lien NHL
Tyler LewingtonBruins (BOS)D271994-12-05No195 Lbs6 ft2NoNoNo1Pro & Farm750,000$225,806$0$0$NoLien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1825.61191 Lbs6 ft11.28782,963$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Joona Koppanen40122
2Matt FilipeJack Studnicka30122
3Jakub LaukoMarc McLaughlin20122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tyler LewingtonJack Ahcan40122
2Kodie CurranNick Wolff30122
3Samuel Asselin20122
4Tyler LewingtonJack Ahcan10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Joona Koppanen60122
2Matt FilipeJack Studnicka40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tyler LewingtonJack Ahcan60122
2Kodie CurranNick Wolff40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
240122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tyler LewingtonJack Ahcan60122
2Kodie CurranNick Wolff40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Tyler LewingtonJack Ahcan60122
240122Kodie CurranNick Wolff40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tyler LewingtonJack Ahcan60122
2Kodie CurranNick Wolff40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Joona KoppanenTyler LewingtonJack Ahcan
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Joona KoppanenTyler LewingtonJack Ahcan
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Marc McLaughlin, Jakub Lauko, Samuel AsselinMarc McLaughlin, Jakub LaukoSamuel Asselin
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Kodie Curran, Nick Wolff, Tyler LewingtonKodie CurranNick Wolff, Tyler Lewington
Tirs de pénalité
, , , , Jack Studnicka
Gardien
#1 : , #2 :
Lignes d’attaque personnalisées en prolongation
, , , , Jack Studnicka, Joona Koppanen, Joona Koppanen, Marc McLaughlin, Matt Filipe, Jakub Lauko, Samuel Asselin
Lignes de défense personnalisées en prolongation
Tyler Lewington, Jack Ahcan, Kodie Curran, Nick Wolff,


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2110000013761010000056-11100000081720.50013243700897969380701708697355315105210330.00%4325.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
2American3210000010100220000007431010000036-340.667102030008979693124701708697351153132659444.44%16568.75%01083197654.81%976204947.63%500100749.65%13679671359396711355
3Barrucada1010000014-3000000000001010000014-300.000123008979693337017086973548121229100.00%5260.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
4Bears22000000945110000004221100000052341.000917260089796939070170869735552146110440.00%20100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
5Canucks2110000059-4110000002111010000038-520.50051015008979693637017086973581191835300.00%9277.78%01083197654.81%976204947.63%500100749.65%13679671359396711355
6Checkers420011002217521001000131032100010097270.875223961008979693133701708697351434631829222.22%12375.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
7Chekers11000000422000000000001100000042221.00048120089796933970170869735289029000.00%000.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
8Comets10001000431100010004310000000000021.00045900897969351701708697353876165240.00%30100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
9Condors11000000633000000000001100000063321.0006111700897969336701708697354518624200.00%20100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
10Crunch422000002017321100000126621100000811-340.500203656008979693159701708697351614618838337.50%9366.67%01083197654.81%976204947.63%500100749.65%13679671359396711355
11Eagles5230000017170211000008803120000099040.40017284500897969318070170869735197613810819526.32%19478.95%01083197654.81%976204947.63%500100749.65%13679671359396711355
12Griffins22000000954220000009540000000000041.00091625008979693777017086973556131035600.00%5180.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
13Gulls11000000514000000000001100000051421.0005914008979693367017086973521613172150.00%40100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
14Heat2020000038-51010000003-31010000035-200.0003580089796936370170869735572018459111.11%8187.50%01083197654.81%976204947.63%500100749.65%13679671359396711355
15Islanders11000000321000000000001100000032121.00035800897969338701708697352366177228.57%3166.67%01083197654.81%976204947.63%500100749.65%13679671359396711355
16Marlies11000000431110000004310000000000021.00047110089796933870170869735231110224125.00%5180.00%11083197654.81%976204947.63%500100749.65%13679671359396711355
17Monsters220000001064110000006331100000043141.0001017270089796939370170869735732414367228.57%7271.43%01083197654.81%976204947.63%500100749.65%13679671359396711355
18Moose1000000145-11000000145-10000000000010.50048120089796933570170869735421012292150.00%6183.33%01083197654.81%976204947.63%500100749.65%13679671359396711355
19Penguins20200000510-51010000026-41010000034-100.0005101500897969360701708697356919833400.00%4175.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
20Phantoms21100000981110000006421010000034-120.500917260089796937870170869735641914492150.00%5340.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
21Reign11000000413110000004130000000000021.00048120089796932870170869735319819300.00%4175.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
22Rocket321000001112-11010000048-42200000074340.6671122330089796931187017086973512033146812541.67%70100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
23Senators2200000015780000000000022000000157841.0001525400089796939070170869735811412407114.29%40100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
24Silver Knights11000000422110000004220000000000021.00048120089796932670170869735387630200.00%30100.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
25Stars22000000945220000009450000000000041.000916250089796939570170869735821916447228.57%8187.50%01083197654.81%976204947.63%500100749.65%13679671359396711355
26Thunderbirds330000001981122000000144101100000054161.000193352008979693124701708697351174620615480.00%10280.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
27Wild1000010034-1000000000001000010034-110.500358008979693207017086973542128272150.00%4250.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
28Wolf Pack20001100550100010003211000010023-130.7505101500897969369701708697355013104614321.43%5180.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
29Wolves21100000714-7110000007611010000008-820.50071017008979693627017086973583181258400.00%6350.00%01083197654.81%976204947.63%500100749.65%13679671359396711355
Total573416033012401984229196030011319635281510003001091027780.684240431671008979693213870170869735203658438612601754827.43%1794375.98%11083197654.81%976204947.63%500100749.65%13679671359396711355
_Since Last GM Reset573416033012401984229196030011319635281510003001091027780.684240431671008979693213870170869735203658438612601754827.43%1794375.98%11083197654.81%976204947.63%500100749.65%13679671359396711355
_Vs Conference332080320014312320171130300081621916950020062611480.72714325639900897969312807017086973511543212017111083027.78%932474.19%11083197654.81%976204947.63%500100749.65%13679671359396711355
_Vs Division19134011009171201072010004936139620010042357290.7639116525600897969373970170869735699194127395551629.09%581377.59%11083197654.81%976204947.63%500100749.65%13679671359396711355

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
5778L224043167121382036584386126000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
5734163301240198
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
29196300113196
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
2815100300109102
Derniers 10 matchs
WLOTWOTL SOWSOL
640000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1754827.43%1794375.98%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
701708697358979693
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1083197654.81%976204947.63%500100749.65%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
13679671359396711355


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2022-06-0110Bruins3Rocket1AWSommaire du match
3 - 2022-06-0217Bruins5Eagles3AWSommaire du match
5 - 2022-06-0430Thunderbirds3Bruins5BWSommaire du match
8 - 2022-06-0752Griffins2Bruins3BWSommaire du match
10 - 2022-06-0967Bruins2Eagles3ALSommaire du match
12 - 2022-06-1180Rocket8Bruins4BLSommaire du match
14 - 2022-06-1389Bruins3American6ALSommaire du match
16 - 2022-06-15105Bruins4Checkers5ALXSommaire du match
18 - 2022-06-17119Checkers3Bruins5BWSommaire du match
22 - 2022-06-21148Crunch2Bruins9BWSommaire du match
25 - 2022-06-24171Marlies3Bruins4BWSommaire du match
28 - 2022-06-27195Bruins6Senators4AWSommaire du match
30 - 2022-06-29203Stars1Bruins4BWSommaire du match
34 - 2022-07-03231Eagles6Bruins4BLSommaire du match
35 - 2022-07-04236Bruins5Crunch4AWSommaire du match
38 - 2022-07-07261American2Bruins3BWSommaire du match
41 - 2022-07-10282Bruins8Admirals1AWSommaire du match
43 - 2022-07-12293Moose5Bruins4BLXXSommaire du match
46 - 2022-07-15322Phantoms4Bruins6BWSommaire du match
48 - 2022-07-17339Bruins3Crunch7ALSommaire du match
50 - 2022-07-19350Bruins5Bears2AWSommaire du match
51 - 2022-07-20360Crunch4Bruins3BLSommaire du match
54 - 2022-07-23384Stars3Bruins5BWSommaire du match
56 - 2022-07-25397Bruins3Penguins4ALSommaire du match
58 - 2022-07-27416Eagles2Bruins4BWSommaire du match
60 - 2022-07-29432Bruins1Barrucada4ALSommaire du match
62 - 2022-07-31445Bruins3Heat5ALSommaire du match
64 - 2022-08-02454Heat3Bruins0BLSommaire du match
66 - 2022-08-04470Bruins4Monsters3AWSommaire du match
68 - 2022-08-06485Thunderbirds1Bruins9BWSommaire du match
71 - 2022-08-09503Bruins3Canucks8ALSommaire du match
73 - 2022-08-11518Canucks1Bruins2BWSommaire du match
75 - 2022-08-13530Bruins2Wolf Pack3ALXSommaire du match
78 - 2022-08-16549Monsters3Bruins6BWSommaire du match
80 - 2022-08-18561Bruins4Chekers2AWSommaire du match
82 - 2022-08-20580Bruins3Islanders2AWSommaire du match
84 - 2022-08-22592Silver Knights2Bruins4BWSommaire du match
86 - 2022-08-24606Bruins4Rocket3AWSommaire du match
88 - 2022-08-26621Griffins3Bruins6BWSommaire du match
92 - 2022-08-30649Wolves6Bruins7BWSommaire du match
94 - 2022-09-01668Bruins3Wild4ALXSommaire du match
97 - 2022-09-04680American2Bruins4BWSommaire du match
100 - 2022-09-07707Bears2Bruins4BWSommaire du match
101 - 2022-09-08719Bruins3Phantoms4ALSommaire du match
104 - 2022-09-11737Bruins9Senators3AWSommaire du match
106 - 2022-09-13745Comets3Bruins4BWXSommaire du match
109 - 2022-09-16771Reign1Bruins4BWSommaire du match
111 - 2022-09-18786Bruins5Gulls1AWSommaire du match
113 - 2022-09-20803Bruins6Condors3AWSommaire du match
114 - 2022-09-21810Penguins6Bruins2BLSommaire du match
116 - 2022-09-23829Bruins2Eagles3ALSommaire du match
118 - 2022-09-25842Wolf Pack2Bruins3BWXSommaire du match
120 - 2022-09-27861Bruins5Checkers2AWSommaire du match
121 - 2022-09-28870Bruins5Thunderbirds4AWSommaire du match
122 - 2022-09-29880Checkers7Bruins8BWXSommaire du match
126 - 2022-10-03900Bruins0Wolves8ALSommaire du match
127 - 2022-10-04910Admirals6Bruins5BLSommaire du match
131 - 2022-10-08934Gulls-Bruins-
134 - 2022-10-11962Roadrunners-Bruins-
135 - 2022-10-12971Bruins-Reign-
138 - 2022-10-15990Bruins-Moose-
140 - 2022-10-171000Rocket-Bruins-
144 - 2022-10-211027Marlies-Bruins-
146 - 2022-10-231045Bruins-American-
148 - 2022-10-251059Condors-Bruins-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
152 - 2022-10-291089Wild-Bruins-
154 - 2022-10-311102Bruins-Stars-
156 - 2022-11-021120Barrucada-Bruins-
158 - 2022-11-041133Bruins-Phantoms-
161 - 2022-11-071153Bruins-Silver Knights-
162 - 2022-11-081158Chekers-Bruins-
165 - 2022-11-111186IceHogs-Bruins-
170 - 2022-11-161218Islanders-Bruins-
172 - 2022-11-181232Bruins-Comets-
173 - 2022-11-191236Bruins-IceHogs-
175 - 2022-11-211250Senators-Bruins-
177 - 2022-11-231263Bruins-Marlies-
178 - 2022-11-241269Bruins-Griffins-
180 - 2022-11-261281Senators-Bruins-
181 - 2022-11-271290Bruins-Roadrunners-
182 - 2022-11-281293Bruins-Marlies-
183 - 2022-11-291296Bruins-Griffins-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
12 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,539,768$ 1,409,334$ 1,409,334$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
7,577$ 980,602$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 56 11,878$ 665,168$




Bruins Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bruins Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Bruins Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Bruins Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bruins Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA